

Acute Kidney Injury

Prof Brig Gen Mamun Mostafi
MACP, MRACP, FCPS, FRCP

Epidemiology

INCIDENCE

- I-5% of all patients
- 10-23 % in the ICU

Epidemiology

MORTALITY

- 20-70% Overall
- 79% for patients requiring RRT (ICU)

AKI- definition

 An abrupt fall in GFR over a period of minutes to days with rapid rise in nitrogenous waste products in blood.

(Rate of production of metabolic waste exceeds the rate of renal excretion)

Definition

AKI is defined as any of the following:

- Increase in S Creatinine by ≥0.3 mg/dl (≥26.5 μmol/l) within 48 hours;
- Increase in S Creatinine to ≥1.5 times baseline, which is known or presumed to have occurred within the prior 7 days;
- ☐ Urine volume <0.5 ml/kg/h for 6 hours.

Acute Kidney Injury Network (AKIN- 2005)

7

AKIN Staging

Serum Creatinine

Urinary Output

Time

AKIN

stage	Criteria	Criteria	
1	↑ Cr ≥ 0.3 mg/dl or ≥26.5 µmol/l or 1.5-1.9 times baseline	< 0.5 ml/kg/hr	> 6 -12 hrs
2	↑ Cr 2-2.9 times baseline	< 0.5 ml/kg/hr	≥ 12 hrs
3	↑ Cr ≥ 3 from baseline or Cr ≥ 4mg/dl (≥353.6 µmol/l) or initiation of RRT	< 0.3 ml/kg/hr or anuria	≥ 24 hrs ≥ 12 hrs

Acute Kidney Injury

Stage	Increase in serum Creatinine
1	≥1.5 x previous result
2	≥2 x previous result
3	≥3 x previous result, RRT Anuria ≥ 12 hours

Relationship between GFR and serum creatinine in AKI

Figure: The abrupt drop in GFR but the S.Cr. does not start going up for 24 or 36 hours after the acute insult.

One glass urine in 12 hours

Risk factors of AKI

- eGFR < 60 ml/min/1.73m2 or history of AKI
- Diabetes
- Heart failure, liver disease,
- Neurological or cognitive impairment
- Use of nephrotoxic drugs
- Use of iodinated contrast agents within the past week
- Symptoms or history of urological obstruction
- Sepsis
- Age 65years or over

To function properly kidneys require:

- Normal renal blood flow Prerenal.
- Functioning glomeruli, tubules and interstitium – Intrinsic/Renal.
- Clear urinary outflow tract Postrenal.

PRE-RENAL (Hemodynamic) AKI

Hypotension

Cardiogenicshock

Hypovolaemia
Haemorrhage,
Vol depletion
(vomit, diarr, diuresis,
burns)

Oedema states
Cardiac failure
Hepatic cirrhosis
Nephr. syndrome

Hypoperfusion
NSAIDs
ACEI / ARBs
RAS /occlusion
Hepatorenal
syndrome

Renal / Intrinsic AKI

Glomerular

Tubular

Interstitial

Vascular

AGN

PSGN,
SLE,
ANCA associated,
anti-GBM disease
HSP,
Cryoglobulinemia,
TTP,
HUS

ATN

Ischemia-50%
Toxins -30%

AIN

Drug: NSAIDs, antibiotics Infiltrative: lymphoma Granulomatous-Sarcoidosis, TB Infection: APN **Vascular** occlusions

- Renal artery occlusion
 - Renal vein thrombosis
- Cholesterol emboli

5- 15%

70-80%

8 -20%

< 2%

16

Post-renal Urinary outflow tract obstruction

Intrinsic

Extrinsic

Intra-luminal

- •Stone,
- Blood clots,
- Papillary necrosis

Intra-mural

- Urethral stricture,
- •BPH,
- Ca prostate,
- · Bladder tumour,
- Radiation fibrosis

- Pelvic malignancies
- Prolapsed uterus
- •Retroperitoneal fibrosis

Acute Kidney Injury

Prerenal

Uosm > 500 mosm/kg Una < 20 meq/L FEna < 1% Microscopy – bland BUN / S.Cr. Ratio USG- Normal

Intrinsic/ Renal

Post Renal

Uosm: variable

UNa: low early, high late

FEna: variable

Microscopy – bland

USG - Diagnostic

Ischemic / Toxic ATN

Uosm ~ 300 mosm/kg UNa > 40meq/L FEna > 2% Microscopy – dark pigment cast

Acute Interstitial Nephritis

Uosm: variable, ∼300

mosm/kg

UNa > 40 meq/L

FEna > 2%,

Eosinophils

Microscopy – WBC, RBC,

leukocyte casts

Acute GN

Uosm: variable

UNa: variable

FEna: variable,

ME – hematuria-

dysmorphic, RBC

casts, proteinuria

Pre-renal AKI

History

- Any obvious causes of hypotension, hypovolaemia or hypo perfusion.
 - a) Haemorrhage/haematoma,
 - b) GI loss diarrhoea, vomiting, renal loss, skin loss (burns/exfoliation),
 - c) Third spacing (pancreatitis).
 - d) Evidence of cardiac failure
- Sepsis (and if so what is the source?)

Examination

- Low BP, rapid pulse.
- Cool peripheries vascular shut down
- Capillary refill time greater than 2 seconds implies volume depletion or poor cardiac function
- Lying and standing blood pressure significant drop implies hypovolaemia
- Warm to touch sepsis?
- Peripheral pulses are they bounding

Examination

- Reduced skin turgor, dry lips, mouth and mucous membranes - systemic hypovolaemia
- Face sunken eyes imply dehydration,
- JVP: may be low if volume depleted

Prerenal

- Uosm > 500 mosm/kg
- Una < 20 meq/L
- FEna < 1%
- Microscopy bland
- 1 BUN / S.Cr. Ratio
- USG- Normal

Post-renal AKI

- History
 - Lower urinary tract symptoms (LUTS) frequency, urgency, dysuria, nocturia, poor stream, hesitancy, terminal dribbling, strangury.
 - Prostatism.
 - Haematuria (visible and non-visible)
 - Loin pain

Examination

- Look for:
 - palpable abdominal masses,
 - palpable bladder,
 - visible haematuria,
 - rectal examination for prostate in males

Post Renal

- Uosm: variable
- UNa: low early, high late
- FEna: variable
- Microscopy bland/ haematuria
- Imaging studies Diagnostic

History

- Hypovolaemia, hypotension, hypo perfusion, sepsis or toxin/drugs
- Oliguria, haematuria, puffy face, oedema.
- Fever, arthritis, rash etc
- Headache, nausea, vomiting
- SOB
- Altered consciousness
- Presence or history of a primary disease/event.

Examination

- Signs of fluid overload- oedema/anasarca
- JVP: raised if heart failure or AKI causing significant volume overload
- Heart: Listen for an S3
- Lungs: signs pulmonary oedema.
- Signs of pneumonia / source of sepsis
- Abdomen: Organomegaly, ascites, evidence of sepsis
- Urine output catheterize if doubt

Examination

Evaluation for

- rashes,
- arthritis,
- oral ulceration,
 epistaxis,

- skin changes,
- uveitis,
- new neurology sign including hearing loss,
- stigmata of endocarditis

<u>ATN</u>

- Uosm ~ 300 mosm/kg
- UNa > 40meq/L
- FEna > 2%
- Microscopy Muddy brown granular cast

Acute Interstitial Nephritis

- Uosm: variable, ~300 mosm/kg
- UNa > 40 meq/L
- FEna > 2%,
- Esinophils
- Microscopy WBC, Eosinophil, RBC, leukocyte casts

Acute GN

- Oliguria, puffy
- Uosm: variable
- UNa: variable
- FEna: variable,
- ME hematuria- dysmorphic,
 RBC casts, proteinuria

Renal biopsy

- In specific cases.
- Biopsy will guide the management

PaO2 50 mm of Hg PaO2 20 mm of Hg

10 mm of Hg

PaO₂

Pathophysiology of ATN: Tubular Epithelial Cell Injury and Repair

What to do with a Raised Creatinine?

Acute or Chronic?

- Distinguishing between AKI and chronic renal impairment is important, as –
 - The approach to these patients differs greatly.
 - This may, save a great deal of unnecessary investigation.

Factors that suggest chronicity include –

- History of:
 - HTN,
 - DM,
 - Arthritis and
 - NSAID,
 - Stone disease and obstruction,
 - Congenital diseases.

0

Factors that Suggest Chronicity include –

- Absence of acute illness,
- Long duration of symptoms,
- Nocturia,
- Leuconychia
- Pigmentation
- Anaemia,
- Hypocalcaemia.
- Previous Serum creatinine
- Kidney size.

What investigations are most useful in AKI?

- Urinalysis:
 - Blood,
 - · Protein,
 - Cells
 - Casts
 - · UNa, FeNa

RBCs

Dysmorphic red cells Scanning microscopy showing dysmorphic red cells in a patient with glomerular bleeding. Acanthocytes can be recognized as ring forms with vesicle-shaped protrusions (arrows). Courtesy of Hans Köhler, MD.

Monomorphic red cells Urine sediment showing many red cells and an occasional larger white cell with a granular cytoplasm (arrows). The red cells have a uniform size and shape, suggesting that they are of nonglomerular origin. Courtesy of Harvard Medical School.

Dysmorphic red blood cells suggest glomerular injury.

Marker of glomerular injury

Red blood cell cast

Granular cast

Marker of acute tubular necrosis

Pigmented granular ("muddy brown") casts

Marker of acute interstitial nephritis.

12/15/2018

Haematology

- Full blood count, blood film:
 - Neutrophilia in sepsis
 - Eosinophilia may be present in acute interstitial nephritis, cholesterol embolization, or vasculitis (CSS)
 - Thrombocytopenia and red cell fragments suggest thrombotic microangiopathy –TTP, HUS

Biochemistry

- Daily
 - urea, creatinine,
 - electrolytes,
 - PH, serum bicarbonate
 - Calcium.

Biochem....

- CPK, myoglobinuria
 - Rhabdomyolysis
- Serum immunoglobulins, serum protein electrophoresis, Bence Jones proteinuria
 - Myeloma

Haem....

- Coagulation studies :
 - Disseminated intravascular coagulation associated with sepsis

Immunology

- Antinuclear antibody (ANA), Anti-double stranded (ds) antibody.
- C3 & C4 complement concentrations-
 - Low in SLE, acute post infectious glomerulonephritis, Cryoglobulinemia
- ANCA
- Anti GBM antibodies
- ASO and anti-DNAse B titres
 - High after streptococcal infection
- Hepatitis B and C, HIV serology

Imaging

- Renal ultrasonography
 - For renal size, symmetry, evidence of obstruction
- CXR
- X-Ray KUB

Clinical Scenario

A 10 year old girl presented with S Creatinine of 2.0 mg/dL. She has oliguria, haematuria and puffy face. Her BP is 150/100 mmHg.

- AKI or CKD?
 - GN
 - . PSGN
 - 2. SLE
 - 3. Vasculitis
- History:
- Investigations:

Clinical Scenario

S Creatinine of a 21 year old farmer is 2.2 AKI or CKD? mg/dL. He reported with severe acute watery diarrhoea and

vomiting for two

days. He has not

yesterday.

passed urine since

- Pre renal or Renal?
 - History
 - Ph Exam
 - Investigations

12/15/2018 52

Clinical Scenario, What to do?

S creatinine of a 43 old man is 4.9mg/dL. He was having LBP for last six months along with irregular fever. His family physician advised Naproxen, which he is taking off and on for last two months.

AKI or CKD?

- Prerenal or Renal?
 - History
 - Exam
 - Investigations

Initial 7 Steps of AKI Management Bundle

- Confirm AKI
- Assess emergency: Pulmonary oedema, Hyperkalaemia, Acidosis.
- Undertake ABCDE full clinical examination
- Stop nephrotoxic drugs
- Urine dipstick test and confirm by RME
- Biochemistry Check & repeat.
- Renal ultrasound and consider urinary catheter
- Urgent senior review

Management principles...

- Identify the source of infection and treat aggressively keeping dose adjustment.
 - Minimise indwelling lines
 - Remove bladder catheter if anuric.
- Identify and treat bleeding tendency:
 - PPI, H2 antagonist, avoid aspirin
 - transfuse if required

Optimise nutritional support

- Maintaining adequate nutrition enhances patient survival
- Maintain protein intake about Igm/Kg/Day
- Protein intakes of > 1.2 g/kg/ day can dramatically increase azotaemia.

RRT

- Initiate dialysis before uraemic complications set in.
- Early RRT improves mortality and recovery .
- Specific types of therapy are available for critically ill patients.

Conclusions

- AKI is increasingly common, particularly among hospital inpatients and critically ill patients.
- It carries a high mortality

Conclusions...

 Patients at risk are - elderly people; patients with diabetes, hypertension, or vascular disease; and those with pre -existing renal impairment

Conclusions...

- AKI is often preventable.
- Rapid recognition of incipient AKI and early treatment of established AKI is life saving and prevent irreversible loss of nephrons.

