

**BSMCON 2018** 



Dr. Syed Ghulam Mogni Mowla MBBS, FCPS, FACP

### Introduction

- Aplastic anaemia (AA) is the paradigm of the human bone marrow failure syndromes
- Fatal just a few decades ago, AA can now be cured or ameliorated
- The success is attributed to the better understanding of the pathophysiology and advanced treatment
- But, making a diagnosis and selecting among treatment options are not straightforward, and both physicians and patients face serious decision points
- Recent insights into pathophysiology have practical treatment implications

## Pathophysiology As basis of diagnosis and treatment

- Previously, an intrinsic defect of hematopoietic cells; external injury to hematopoietic cells; and defective stroma –all were held responsible.
- The role of an immune dysfunction was suggested in 1970, when autologous recovery was documented in a patient with aplastic anemia who failed to engraft after HCT.
- Technical advances in cell biology, flow cytometry, molecular biology, and immunology has led to a more unified and rational view of aplastic anemia's pathophysiology
- The pathophysiology is immune mediated in most cases, with activated type 1 cytotoxic T cells implicated.

### **Pathophysiology**

As basis of diagnosis and treatment



### **Acquired Causes**

- Idiopathic factors
- Infectious causes, such as hepatitis viruses, EBV, HIV, etc.
- Exposure to ionizing radiation
- Exposure to toxic chemicals, such as benzene or pesticides
- Transfusional graft versus host disease (GVHD)
- Orthotopic liver transplantation for fulminant hepatitis
- Pregnancy
- Eosinophilic fasciitis
- Anorexia
- Severe nutritional deficiencies (B12, folate)
- PNH, MDS, rarely-ALL

### **Congenital or Inherited Causes**

- A number of inherited (constitutional/genetic)
  disorders are characterized by bone marrow
  failure/aplastic anaemia (AA) usually in association
  with one or more somatic abnormality.
- Several loci have been identified
- History and physical
  - Family with cytopenias, premature graying, pulmonary fibrosis
  - Short stature, physical abnormalities
- Examples:
  - Fanconi anaemia
  - Dyskeratosis congenita
  - Familial AA

### Diagnosis

- There are three diagnostic steps in AA.
  - Confirm the suspicion of AA and exclude other bone marrow failure diseases
  - Define the severity of the disease
  - Characterize the AA

### Diagnosis

- Presence of pancytopenia and proof of an empty bone marrow is mandatory.
- The diagnosis of Aplastic Anemia (AA) may be difficult and sometimes needs repeated marrow investigations.



### Diagnosis: Confirm the suspicion





### AA/MDS

|   |                      | AA            | MDS                 |
|---|----------------------|---------------|---------------------|
|   | Splenomegaly at dx:  | absent        | possible            |
| • | Cytopenia            | present       | present             |
| • | Dysplasia            | absent        | present             |
|   | Erythropoiesis       | possible      | possible            |
|   | Myelopoiesis         | absent        | possible            |
|   | Megakaryopoiesis     | absent        | possible            |
|   | Blasts               | absent        | variable            |
|   | CD34+ immunohistoch. | not increased | normal or increased |
|   | Marrow fibrosis      | absent        | possible            |

### AA/PNH

- Overlap in approximately 40% to 50% of cases
- More than 1% granulocytes deficient in glycosylphosphoinsoitol-linked proteins detectable by flow cytometry are considered abnormal
- Evidence of hemolysis: Complete blood count, reticulocyte count, serum concentration of lactate dehydrogenase (LDH), bilirubin (fractionated), and haptoglobin

### Why It Matters



# A 1.0 PNH+ Overall response PNH PNH PNH Months after start of treatment

## Overall Survival is Shorter if hMDS compared to AA



Blood 2002; 100:1570-157; Blood 2002:100:3897-39



### **Assess Severity**

#### Classification of AA: Camitta Criteria

| Peripheral Blood                      | Non-severe          | Severe              | Very-severe          |  |
|---------------------------------------|---------------------|---------------------|----------------------|--|
| Cytopenias                            | (Moderate)          | aplastic anemia     | aplastic anemia      |  |
|                                       | aplastic anemia     | (any 2 of 3)        | (meets criteria for  |  |
|                                       | (not meeting        |                     | severe disease and   |  |
|                                       | criteria for severe |                     | absolute neutrophils |  |
|                                       | disease)            |                     | < 200)               |  |
| Bone marrow                           | < 25%               | < 25%               | < 25%                |  |
| cellularity                           |                     |                     |                      |  |
| Absolute                              |                     | < 500 / μl          | < 200 / μl           |  |
| neutrophil count                      |                     |                     |                      |  |
| Platelet count                        |                     | < 20,000 / μl       |                      |  |
| Reticulocyte                          |                     | < 1.0% corrected or |                      |  |
| count                                 |                     | < 60,000 / μl       | (A) JOHNS HOPKINS    |  |
| Camitta BM et al.Blood, 1976;48:63–70 |                     |                     |                      |  |

### Characterize the AA

- Aplastic anemia and PNH
- Aplastic anemia and HLA-DR2 / HLA-DRB1\*15
- Hepatitis associated Aplastic Anemia
- Aplastic anemia associated with other autoimmune disorders (AID)

### Diagnostic Workup for AA

- Full blood count with reticulocyte count (automated or microscopic counting)
- Peripheral blood film examination
- PNH clone with a sensitive multicolor flow cytometry
- Viral hepatitis studies (serological and DNA/RNA)
- BM aspirate for morphology, cytogenetic, FISH-analysis (search for -7; +8), immunophenotyping, Pearls staining, viral (HIV, CMV, EBV) and microbiological studies.
- Marrow trephine biopsy assessing overall hematopoietic cellularity, single lineage cellularity, ALIP, blasts (CD34, CD117) and fibrosis.
- HLA-typing (search for HLA-DRB1\*15) and family typing when patients eligible for HSCT

### Diagnostic Workup for AA



### When and whom to treat



### Moderate AA: Suportive Care

- General: Flowers and plants as potential source of fungal spores and Pseudomonas should be avoided. Low microbial food is recommended
- Individual hygiene rules should be applied
- Prevention and treatment of infections
- Blood counts should be monitored regularly, usually 3 times/week.
- Blood transfusion therapies: platelets, RBC
- GCSF is often used in neutropenic infections
- Androgen therapy: a proportion of non responders to IS therapy
- Psychological support

### Treatment algorythm for SAA



### **Conclusions and Prospects**

- Long-term survival of more than 75% of patients can be anticipated with therapy
- For HSCT: immediate challenge is the extension of stem-cell replacement to all patients, regardless of age, with a histocompatible sibling, and to others who lack a family donor using alternative stem-cell sources
- For immunosuppression: many new drugs and biologics have yet to be tested
- Measurement of telomere length and blood counts offer the possibility of rational risk stratification of treatment in future protocols.



Thank You!!