CASE SCENARIO-1

A 25-year-old female presented with recurrent severe pain in left lumber region for one year.

X-ray KUB revealed-

ABG

- ✓PH-7.2
- ✓HCO₃-10 mmol/L
- ✓PaCO2-30 mmol/L
- ✓Na-136 meq/L
- ✓K-2 meq/L
- ✓CI-114 meq/L
- ✓ Anion Gap-14

Urinary PH-7.1

CASE SCENARIO-2

A 52-year-old male made recurrent visits in medicine OPD for low back pain.

X-ray L-S spine revealed

Osteomalacia with biconcave (fish vertebra) with endplate depression.

ABG

- ✓PH-7.25
- ✓HCO₃-12 mmol/L
- ✓PaCO2-38 mmol/L
- ✓ Na-138 meq/L
- ✓ K-2.5 meq/L
- ✓ CI-116.5 meq/L
- ✓ Anion Gap-12

Urinary PH-6.8

KEY FINDINGS IN TWO CASES

- ➤ Metabolic acidosis
- ➤ Urinary PH >5.5
- Hypercloraemia
- ➤ Normal Anion Gap
- > Hypokalaemia

RENAL TUBULAR ACIDOSIS

Dr.M.S.Arefin Patwary

Consultant

Department of medicine

Dhaka Medical College Hospital

RENAL TUBULAR ACIDOSIS (RTA) SHOULD BE SUSPECTED WHEN

- There is a hyperchloraemic acidosis
- ➤ Normal anion gap
- No evidence of gastrointestinal disturbance.
- The urine pH is inappropriately high (> 5.5)
- Presence of systemic acidosis.

HISTORY

- ☐First described in 1935
- Confirmed as renal tubular disorder in 1946
- □Entitled as 'Renal Tubular Acidosis' in 1951

PATHOPHYSIOLOGY

- Impaired bicarbonate reabsorption in the proximal tubule (proximal RTA)
- Impaired acid secretion in the late distal tubule ,cortical collecting duct intercalated cells (classical distal RTA)
- Impaired sodium reabsorption in the late distal tubule or cortical collecting duct, which is associated with reduced secretion of both potassium and H+ ions (hyperkalaemic distal RTA).

Renal Tubular Acidosis

Source: Fauci AS, Kasper DL, Braunwald E, Hauser SL, Longo DL, Jameson JL, Loscalzo J: *Harrison's Principles of Internal Medicine*, 17th Edition: http://www.accessmedicine.com Copyright @ The McGraw-Hill Companies, Inc. All rights reserved.

CAUSES OF PROXIMAL RENAL TUBULAR ACIDOSIS

- ➤Inherited- Fanconi's syndrome, Cystinosis, Wilson's disease
- Paraproteinaemia
- **≻**Myeloma
- Amyloidosis
- Hyperparathyroidism
- Heavy metal toxicity-Lead, cadmium and mercury poisoning
- > Drugs-Carbonic anhydrase inhibitors, Ifosfamide

CHARACTERISTICS OF PROXIMAL RENAL TUBULAR ACIDOSIS

- Wasting of amino acids, phosphate and glucose(Fanconi's syndrome), as well as bicarbonate and potassium.
- > Lower the urine pH when the acidosis is severe
- ➤ Plasma bicarbonate levels have fallen below 16 mmol/L since distal H+ secretion mechanisms are intact.

CLINICAL MANIFESTATIONS

- Failure to thrive, growth retardation.
- Polyuria, Polydipsia
- Dehydration (due to sodium, H₂O Losses)
- Rachitic Manifestations.
- Irritability, anorexia

CAUSES OF CLASSICAL DISTAL RENAL TUBULAR ACIDOSIS

- >Inherited
- Autoimmune diseases-Systemic lupus erythematosus, Sjögren's syndrome
- Hyperglobulinaemia
- > Toxins and drugs-Toluene, Lithium, Amphotericin

CHARACTERSTICS OF CLASSICAL DISTAL RTA

- > Acid accumulation is relentless and progressive
- Mobilisation of calcium from bone
- Costeomalacia with hypercalciuria, renal stone formation and nephrocalcinosis.
- > Potassium is lost in classical distal RTA.

CLINICAL MANIFESTATIONS

- Failure to thrive, Growth retardation.
- Polyuria, Polydipsia
- Nephrocalcinosis, Nephrolithiasis
- Rachitic manifestations (later in childhood), Osteomalacia (in adult)
- Weakness, Transient paralysis (due to hypokalaemia)

CAUSES OF HYPERKALAEMIC DISTAL RENAL TUBULAR ACIDOSIS

- > Hypoaldosteronism (primary or secondary)
- Obstructive nephropathy
- > Renal transplant rejection
- > Drugs-Amiloride, Spironolactone

CHARACTERSTICS OF TYPE 4 RTA

- Most commom type
- Impaired Aldosterone secretion or distal tubule resistance to Aldosterone
- Impaired function of Na+/K+-H+ (Cation exchange mechanism)
- Decreased H⁺ and K⁺ secretion → plasma buildup of H⁺ and K⁺(Hyperkalaemia)
- Urine pH < 5.5 (because the distal tubule H+ pump functions normally)
- Renal function may be impaired.

CLINICAL MANIFESTATIONS OF TYPE 4 RTA

- Growth retardation.
- Polyuria, polydipsia, dehydration.
- Signs and symptoms of obstructive uropathy and features of pyelonephritis.
- Bone diseases are usually absent.

INVESTIGATIONS

First line investigations

- Complete Blood Count
- Blood sugar
- ■Urine R/M/E
- S.Creatinine
- Arterial Blood Gas Analysis
- S.Electrolytes
- Urinary PH
- NH4Cl acidification test
- ■Furosemide test

Second line investingations

- USG of KUB
- S.Phosphate
- S.Amino acid
- S.caeruloplasmin
- 24 hours urinary copper
- S.Protein electrophoresis
- Tissue exam for amyloidosis
- S.calcium,PTH
- Plasma renin, aldosterone, ARR

MANAGEMENT

- Identification and correction of the underlying cause.
- Controlling diarrhoea, diabetes mellitus, correcting shock, stopping drugs that might cause the condition
- Dialysis to remove toxins.
- Intravenous fluids

MANAGEMENT

- Rapid correction of acidosis can induce hypokalaemia or a fall in plasma ionised calcium
- >Indication of the use of bicarbonate infusions
- ✓ Where the underlying disorder cannot be readily corrected
- ✓ Acidosis is severe (H+ > 100 nmol/L, pH< 7.00)
- ✓ Associated with evidence of tissue dysfunction.

MANAGEMENT

- Supplements of sodium and potassium bicarbonate are usually also necessary in types 1 and 2 RTA to achieve a target plasma bicarbonate level of above 18 mmol/Land normokalaemia.
- In type 4 RTA, loop diuretics, thiazides or fludrocortisone (as appropriate to the underlying diagnosis) may be effective in correcting the acidosis and the hyperkalaemia.

KEY MESSAGE

High index of suspicion to diagnose

THANKYOU

