Interpretation of ABG

Chandra Shekhar Bala, FCPS(Medicine)

Junior Consultant

NINS and Hospital, Dhaka

ABG analysis of Ms Rubi

Ms. Rubi, 20 year-old lady

presented with breathlessness.

She had ingested few strips of

tablets from her fathers table.

PH	7.29
HCO3	14 mmol/L
PCO2	24

ABG analysis of Ms Rubi

- PH 7.29
- Low HCO3
- Metabolic acidosis
- Expected PCO2=

$$(HCO3+15)+2=(14+15)+2=27-31$$

- More than measured
- Respiratory Alkalosis
- Dx: Metabolic acidosis with respiratory alkalosis

PH	7.29
HCO3	14 mmol/L
PCO2	24

ABG analysis of Mr Razu

Mr. Razu 46 year-old, a garment worker from Ashulia presented in the late night with headache and dyspnea & h/o exposure to smoke in a closed room while a fire broke out in his office.

pH	7.43
PaO2	80 mm Hg
PaCO2,	38 mm Hg
SaO2 (calculated from Oxy-haemoglobin dissociation curve	97%

ABG analysis of Mr Razu

- Few hours later Mr.
 Razu presented with confusion again.
- ABG analysis this time.

pH	7.36
PaO2	79 mm Hg
PaCO2,	32 mm Hg
SaO2 measured	56%
СОНЬ	46%

Why ABG

- Aids in establishing a diagnosis
- Helps guide treatment plan
- to evaluate the adequacy of ventilatory (PacO2) acid-base (pH and PaCO2), and oxygenation (PaO2 and SaO2) status, and the oxygen-carrying capacity of blood.
- To quantify the patient's response to therapeutic intervention
- To monitor severity and progression of a documented disease process

ABG INFORMS ..

Assessment of Oxygenation

ventilatoryStatus

Assessment of Acid-Base Status

Most important component

- pH
- PaCO2
- HCO3
- PaO2

- acids are produced in the body everyday
- the hydrogen ion concentration of body fluids is small (0.0004mmol/L
- This is maintained within a narrow range to ensure optimum cellular and enzymatic function

'Imagine there were no buffer..'

- If add 12 mM H+ to closed system
 - –No Respiration
 - -[CO2] = 13.2, [HCO3] = 12, pH = 6.06: **lethal**
- If add 12 mM H+ to body
 Body is open through lungs, all extra CO2 expelled
- [CO2] = 1.2, [HCO3] =12, pH = 7.1

Respiratory Regulation of Acid Base Balance

Kidneys control the acid-base balance by excreting either an acidic or a basic urine

---- XXXX Diagnostics -----Blood Report Gas 248 05:36 Jul 22 2000 Pt ID 2570 / 00 Measured37.0°C pΗ 7.463 pCO_2 44.4 mm Hg pO_2 113.2 mm Hg Corrected 38.6°C pΗ 7.439 pCO_a 47.6 mm Ha pO_2 123.5 mm Hg Calculated Data HCO_s act 31.1 mmol / L HCO₃ std 30.5 mmol / L BE 6.6 mmol / L O_a CT 14.7 mL / dl 98.3 O₂ Sat mmol/I ct CO₂ 32.4 pO₂(A - a) 32.2 mm Hg pO₂ (a / A) 0.79 Entered Data Temp 38.6 °C. ct Hb 10.5 g/dl FiO_a 30.0

Blood Gas Report

Measured Values: most important

Temperature Correction:

Calculated Data:

Entered Data:

step wise approach to Interpretation Of ABG reports

Six steps logical approach originally proposed by Narins and Emmett (1980) and modified by Morganroth in 1991

STEP 1

ACIDEMIA OR ALKALEMIA?

Look at pH

An acid base abnormality may be present even if either the pH or PCO2 are Normal.

STEP 2 RESPIRATORY or METABOLIC?

Look at the PaCO2 to look at the Respiratory Mechanism

PaCO2		
< 35	35 -45	> 45
 Tends toward alkalosis Causes high pH Neutralizes low pH 	Normal or Compensated	 Tends toward acidosis Causes low pH Neutralizes high pH

STEP 2 RESPIRATORY or METABOLIC?

HCO3 to look at the Metabolic Mechanism

HCO ₃		
< 22	22-26	> 26
 Tends toward acidosis Causes low pH Neutralizes high pH 	Normal or Compensated	 Tends toward alkalosis Causes high pH Neutralizes low pH

STEP 2 RESPIRATORY or METABOLIC?

IS PRIMARY DISTURBANCE RESPIRATORY OR METABOLIC?

If either the pH or PCO₂ is Normal, there is a mixed metabolic and respiratory acid base disorder.

STEP 3

RESPIRATORY-ACUTE/CHRONIC?

IF RESPIRATORY, IS IT ACUTE OR CHRONIC?

Acute respiratory disorder - $\Delta pH_{(e\text{-acute})} = 0.008 \text{ x } (Pco_2 \text{ -}40)/10$ Chronic respiratory disorder - $\Delta pH_{(e\text{-chronic})} = 0.003 \text{ x } (Pco_2 \text{ -}40)/10$ Compare, $pH_{measured}$ (pH_m) v/s $pH_{expected}$ (pH_e)

$\mathbf{pH}_{(\mathbf{m})} = \mathbf{pH}_{(\mathbf{e-acute})}$	$pH_{(m)} = between pH_{(e-acute)} & pH_{(e-chronic)}$	$\mathbf{pH}_{(m)} = \mathbf{pH}_{(e\text{-chronic})}$
ACUTE RESPIRATORY DISORDER	PARTIALLY COMPENSATED	CHRONIC RESPIRATORY DISORDER

STEP 4 ADEQUATE COMPENSATION?

IS THE COMPENSATORY RESPONSE ADEQUATE OR NOT?

➤ METABOLIC DISORDER → PCO_{2expected}

 PCO_2 measured $\neq PCO_2$ expected \implies MIXED DISORDER

 $pH_m \neq pH_e$ range \implies MIXED DISORDER

Compensation...The Rules

- The body always tries to normalize the pH so... CO2 and HCO3 should rise and fall together in simple disorders
- Compensation never overcorrects the pH
- Lack of compensation within an appropriate time interval defines a 2nd disorder
- Compensatory responses require normally functioning lungs and kidneys

STEP 5 Calculate the anion gap?

Calculate the anion gap if it is more there is Metabolic acidosis

$$AG = [Na+K] - [CI- +HCO3-]$$

Acidosis

High Anion gap:

- Keto-acidosis
- Uremia/Renal failure
- Salicylate/Aspirin poisoning
- Starvation ketosis
- Methanol poisoning
- Alcohol
- Uremia
- Lactic acidosis
- Ethylene glycol poisoning

Normal anion gap

- GI loss
- RTA

STEP 6 Metabolic : does it coexist with non anion gap acidosis?

CorrectedHCO3= measured HCO3+(anion gap-12)

If the patient has HCO3 15 and anion gap 26

Corrected HCO3 29

Higher than 24 so, metabolic alkalosis coexist

Mixed Acid-base Disorders

- In chronically ill respiratory patients, mixed disorders are probably more common than single disorders, e.g., RAc + MAlk, RAc + Mac, Ralk + MAlk.
- In renal failure (and other conditions) combined MAlk + MAc is also encountered.
- Clues to a mixed disorder:
 - Normal pH with abnormal HCO3 or CO2
 - PaCO2 and HCO3 move in opposite directions
 - pH changes in an opposite direction for a known primary disorder

ABG analysis of Ms Salma

A 25 year-old gentle lady presented with sudden

breathlessness and tingling

and numbness around

mouth.

P ^H	7.52
PaCO ₂	32mm
HCO ₃	22mmol/ L
PaO2	90

ABG analysis of Ms Salma

- Alkalosis
- PaCO2 is low
- HCO3 is low
- Respiratory Alkalosis
- Expected HCO3

24-(40-32)X 0.2= 22.4

Within normal

 Respiratory Alkalosis with partial compensation

P ^H	7.52
PaCO ₂	32mm
HCO ₃	22mmol/L
PaO2	90

ABG analysis of Mr. Salam

Mr. Salam presented with

breathlessness for 2

months. He is smoker and

suffers from chronic cough.

On examination there was

B/L expiratory rhonchi

PH	7.25
PCO2	60mm
PO2	76mm
HCO3	32mmol/L
SaO2	89%

Cont.

ACIDEMIA

- Low pH high PCO₂
- Respiratory
- Expected HCO3

24+(60-40) X 0.4=32

Within measured range

Primary Respiratory Acidosis,

partially compensated

PH	7.25
PCO2	92mm
PO2	76mm
HCO3	21mmol/L
SaO2	89%

Thank you

BASE EXCESS

• BE is the amount of acid or base needed to return a sample of whole blood to normal pH 7.4 under standard conditions of Pco2 [40], Po2 [100] and temp of 37c.

Basic terminology

- pH signifies free hydrogen ion concentration. pH is inversely
- related to H+ ion concentration.
- Acid a substance that can donate H+ ion, i.e. lowers pH.
- Base a substance that can accept H+ ion, i.e. raises pH.
- Anion an ion with negative charge.
- Cation an ion with positive charge.
- Acidemia blood pH< 7.35 with increased H+ concentration.
- Alkalemia blood pH>7.45 with decreased H+ concentration.
- Acidosis Abnormal process or disease which reduces pH due to
- increase in acid or decrease in alkali.
- Alkalosis Abnormal process or disease w

disturbance	response	Expected changes
Respiratory acidosis		
acute	HCO3 T	1mEq/L/10 mm of Hg inc .in Paco2
chronic	HCO3	4mEq/L/10 mm of Hg inc .in Paco2
Respiratory alkalosis		
acute	HCO3 1	2mEq/L/10 mm of Hg dec .in Paco2
chronic	HCO3 ↓	4mEq/L/10 mm of Hg dec .in Paco2
Metabolic acidosis	PPaco2	1.2 x the decrease in HCO3
Metabolic alkalosis	Paco2	0.7 x the increase in HCO3