Definitions Probiotics: Live microorganisms that confer a health benefit on the host when administered in adequate amounts. (WHO, 2002) # The minimum criteria that have to be met for probiotic products #### Probiotic must be: - Specified by genus and strain. - Alive. - Delivered in adequate dose through the end of shelf-life (with minimal variability from one batch to another). - Shown to be efficacious in controlled human studies. - Non-toxic #### What is IBS # Rome III diagnostic criteria for Irritable bowel Syndrome Recurrent abdominal pain or discomfort (an uncomfortable sensation not described as pain) at least 3 days per month in the past 3 months, associated with two or more of the following: - Improvement with defecation. - Onset associated with a change in frequency of stool. - Onset associated with a change in form (appearance) of stool. The criteria must be fulfilled for the last 3 months with symptom onset at least 6 months before diagnosis. #### Which microorganisms are probiotics | Microorganisms | Genus | Species | |----------------|-----------------|---| | Bacteria | Lactobacillus | L.acidophilus, L.brevis, L.reuteri, L.casei,
L.rhamnosum, L.bulgaricus, L.cellobiosus,
L.delbrueckii, L. fermentum. | | | Bifidobacterium | B.thermophilus, B.infantis, B.longum, B.bifidum, B.animalis. | | | Streptococcus | S.lactis, S.thermophilus, S.cremonis, S.alivarius. | | | Bacillus | B.Coagulans B. Clausii | | | Pediococcus | P.acidilactici | | | Leuconostoc | L.mesenteroides | | | Enterobacter | E.faecium, E.faecalis. | | Fungi | Aspergillus | A.niger, A.oryzae. | | Yeast | Saccharomyces | S.boulardii, S.cerevisiae, S.carlsbergensis. | # PROBIOTICS IN IBS Mechanisms of action - Change gut bacterial composition - Potentially return abnormal gut flora to normal - Competitive interactions with pathogens - Produce chemical products, that are toxic to pathogenic bacteria or viruses. - Reinforce the mucosal barrier - Inhibit the movement of bacteria across the gut wall - Produce neurotransmitters that influence the motility and sensation of the gut - Produce cytokines, neuroactive peptides, fatty acids, gas and other substances. ### Justification—research and proof - Lots of clinical studies have been done on efficacy and safety of probiotics - The most common claims are those that relate probiotics to the normal structure and functioning of the human body, known as "structure-function claims." Often considered "soft" claims. ## Summary of Studies on the Compositional Changes of Gut Microbiota in Patients With IBS | Study | Method of confirmation | No. of patients
(Diagnostic criteria) | Results | | | | |--------------------------------|-------------------------------|--|--|--|--|--| | Si et al ⁴⁷ | Culture | 25 (Rome II) | Decreased amounts of Bifidobacteria species. | | | | | | | | Increased amount of Enterobacteriaceae species in IBS patients. | | | | | Tana et al ⁴⁵ | Culture | 26 (Rome II) | Increased Lactobacillus in IBS patients. | | | | | Mättö et al ⁴⁸ | Culture/DGGE | 26 (Rome II) | Increased number of aerobes in IBS patients. | | | | | | | | Temporal instability in IBS patients revealed by DGGE. | | | | | Malinen et al ⁵² | qPCR | 27 (Rome II) | Decreased amounts of Lactobacillus in IBS-D patients. | | | | | | | | Increased amounts of Veillonella in IBS-C patients. | | | | | Tana et al ⁴⁵ | qPCR | 26 (Rome II) | Increased Veillonella in IBS patients. | | | | | Malinen et al ⁴⁹ | qPCR | 44 (Rome I) | R. torques-like phylotype was associated with severity with bowel symptoms. C. cocleatum | | | | | | | | 88%, C. aerofaciens-like and C. eutactus 97% phylotypes were significantly reduced | | | | | | | | among IBS patients with R. torques 94% detected. | | | | | Noor et al ⁵³ | qPCR -DGGE | 11 (Rome II) | Biodiversity of bacterial species were significantly lower in UC and IBS patients than healthy controls. In UC and IBD patients, loss of <i>Bacteriodes</i> species. was observed. | | | | | Swidsinski et al ⁵¹ | FISH | 20 (Unidentified) | E. rectale-C. coccoides accounted for > 40% of the biofilm in IBS patients. | | | | | Kassinen et al ⁵ | Nucleic acid | 24 (Rome II) | Significant differences in the levels of Coprococcus, Collinsella and Coprobacillus species | | | | | | fractionation /
sequencing | | between IBS patients and healthy controls. | | | | IBS, irritable bowel syndrome; DGGE, denaturing gradient gel electrophoresis; PCR, polymerase chain reaction; IBS-D, diarrhea-predominant IBS; IBS-C, constipation-predominant IBS; R torques, Ruminococcus torques; C. cocleatum, Clostridium cocleatum; C. aerofaciens, Collinsella aerofaciens; C. eutactus, Coprococcus eutactus; UC, ulcerative colitis; IBD, inflammatory bowel disease; E. rectale, Eubacterium rectale; C. coccoides, Clostridium coccoides. ### EMB-Randomized Controlled Trials of Probiotics in Patients With IBS Probiotics significant reduction in symptom - Abdominal pain/discomfort - bloating/distention and flatulence - bowel movement difficulty/ diarrhea/ constipation ## Summary of Randomized Controlled Trials of Probiotics in Patients With Irritable Bowel Syndrome | Study | Probiotics | | Dosage
(CFU/mL) | No. of patients
(Diagnostic
criteria) | Duration
(wk) | Results | |---------------------------------|---------------|--------------------------|--------------------|---|------------------|---| | | Single | | | | | | | Sinn et al ¹⁰⁸ | Lactobacillus | L. acidophilus SDC 2012, | 2×10^{9} | 40 | 4 | Significant reduction in abdominal pain | | | species | 2013 | | (Rome III) | | and discomfort ($P = 0.011$) | | Sen et al ¹⁰² | | L. plantarum 299V | 5×10^7 | 12 | 4 | Failed to improve IBS symptoms and to | | | | | | (Rome II) | | alter colonic fermentation | | Niedzielin et al ¹⁰¹ | | | 5×10^7 | 40 | 4 | IBS symptom improvement (pain, | | | | | | (not | | constipation, diarrhea and flatulence): | | | | | _ | characterized) | | 95% vs 15% (P < 0.001) | | Nobaek et al ⁶⁵ | | | 5×10^7 | 60 | 4 | Significant improvement in flatulence | | | | | | (Rome II) | | over placebo: 44% vs 18% ($P < 0.05$) | | Bausserman et al ¹⁰⁰ | | L. rhamnosus GG | 1×10^{10} | 50 (children) | 6 | Not superior to placebo in relieving | | | | | _ | (Rome II) | | abdominal pain | | Gawronska et al ¹⁰⁹ | | | 3×10^{9} | 37 (children) | 4 | Treatment success (resolution of pain and | | | | | | (Rome II) | | relaxed face): 33% vs 5.1% ($P = 0.04$); | | | | | | | | reduced frequency of pain $(P = 0.02)$ | | O'Mahony et al'* | | L. salivarius UCC 4331 | 1 × 10 ¹⁰ | 67
(Rome II) | 8 | No significant improvement in compo-
site and individual score (abdominal
pain/discomfort, bloating/distention and
bowel movement difficulty) over place-
bo | |------------------------------|---------------------------|------------------------------------|---------------------------|--|----------|--| | Niv et al ⁹⁹ | | L. reuteri ATCC 55730 | 1×10^8 | 54
(Rome II) | 6 months | No significant improvement of IBS symptoms over placebo | | O'Mahony et al ⁷⁴ | Bifidobacteria
species | B. infantis 356724 | 1 × 10 ¹⁰ | 67
(Rome II) | 8 | Significant improvement in composite and individual scores (abdominal pain/discomfort, bloating/distention and bowel movement difficulty) over placebo (P < 0.05) | | Whorwell et al ⁹⁵ | | | 1×10^8 | 362 (women)
(Rome II) | 4 | Improvement in global symptom assessment exceed placebo by more than 20% ($P < 0.01$) | | Guyonnet et al ⁹⁶ | | B. animalis DN 173010 ^a | 1.2 × 10 ¹⁰ | 274
(Rome II,
IBS-C) | 6 | Although health-related quality of life
and digestive symptom was improved
over baseline, there was no significant
difference comparing to placebo. | | Enck et al ⁹⁷ | Escherichia
species | E. coli DSM 17252 | Symbioflor 2 ^b | 298
(criteria of
1 care
physicians) | 8 | Improvement of global symptom score and abdominal pain score comparing to placebo: 18.4% vs 4.7%, 18.9% vs 6.67% ($P < 0.001$) | | Study | Probiotics | | Dosage
(CFU/mL) | No. of patients
(Diagnostic
criteria) | Duration
(wk) | Results | |---|------------|---|---------------------------|---|------------------|--| | Kajander et al ¹⁰⁴ | | L. rhamnosus GG, L. rhamnosus LC705, B. breve Bb99 and P. freudenreichii spp. shermanii JS | 8-9 × 10 ⁹ | 86
(Rome II) | 20 | Significant reduction in IBS symptoms (pain, distension, flatulence and rumbling) ($P = 0.008$) | | Kajander et al ¹⁰³ | | - | 8-9 × 10 ⁹ | 103
(Rome I or II) | 26 | Significant reduction in total symptom score (abdominal pain, distension, flatulence and borborygmi) (P < 0.015) | | Williams et al ¹¹⁰ | | L. acidophilus (NCIMB
30157 and NCIMB
30156), B. lactis
(NCIMB 30172) and
B. bifidum (NCIMB
30153) | 2.5 × 10 ¹⁰ | (Rome II) | 8 | Significant reduction in symptom severity score and number of days with pain and improvement of satisfaction of bowel habit, quality of life over placebo $(P < 0.05)$ | | Tsuchiya et al ¹¹¹ | | L. helviticus, L. acidophilus, Bifidobacterium | 10 mL t.i.d. ^c | 68
(Rome II) | 12 | Symptom improvement of IBS: 80% vs $10\%~(P \le 0.01)$ | | Drouault-Holowacz
et al ¹¹² | | B. longum LA 101 (29%),
L. acidophilus LA 102
(29%), L. lactis LA 103
(29%) and
S. thermophilus LA 104
(13%) | 1 × 109 | 100
(Rome II) | 4 | No significant improvement of IBS symptom over placebo | | Hong et al ¹⁰⁷ | | B. bifidum BGN4, B. lactis AD011, L. acidophilus AD031 and L. casei IBS041 | 2 × 10 ⁹ | 70
(Rome III) | 8 | Significant reduction in pain over placebo ($P = 0.045$) | ### The safety of probiotics There are 3 theoretical concerns regarding the safety of probiotics: - (1) the occurrence of disease, such as bacteremia or endocarditis; - (2) toxic or metabolic effects on the gastrointestinal tract; and - (3) the transfer of antibiotic resistance in the gastrointestinal flora. - Most studies found probiotics are safe. - However, there has also been a case of Lacidophilus bacteremia in a patient who had HIV infection and Hodgkin disease and a case of Lactobacillus infection after a bone marrow transplant. Ref: 1. Ledoux D, Labombardi VJ, Karter D. Lactobacillus acidophilus bacteraemia after use of a probiotic in a patient with AIDS and Hodgkin's disease. Int J STD AIDS 2006;17:280-2. 2. Kalima P, Masterton RG, Roddie PH, Thomas AE. Lactobacillus rhamnosus infection in a child following bone marrow transplant. J Infect 1996;32:165-7. #### **SUMMARY** - The gut contains numerous bacteria. - Disruption of gut micro-organism may cause symptoms of IBS. - probiotics help to keep a healthy microorganisms environment in the body. - However, beneficial health claims and safety of probiotics are not yet supported by strong clinical trials.