Lymphoma: An Update

Dr. Lim Soon Thye Head and Senior Consultant, Medical Oncology, National Cancer Centre A/Professor Duke-NUS Graduate Medical School

Major Developments in Lymphoma

- Major advances in our understanding of the biology, leading to a universally adopted WHO classification system
- Prognostic models incorporating molecular markers to guide therapy
- New chemotherapy regimens based on mathematical models: dose-density and dose-intensity
- Incorporation of immunotherapy has altered our therapeutic paradigms for B-cell disorders
- Development of targeted agents: radioimmunoconjugates, antisense oligonucleotide, bortezomib, etc

Lymphoma - Background

- Heterogeneous group of conditions
- Marked changes in lymphoma classification over time
- Older classification:
 - Working formulation
 - Luke-Collins
- Current WHO/REAL classification was first published only in the late 1990s

Background

B-Cell Development

Genetic Aberrations

- Disease of proliferation:
 - Up-regulation of oncogenes involved in proliferation
 - c-myc, cyclin-D1
- Disease of accumulation
 - Up regulation of genes involved in apoptosis
 - e.g. BCL-2
- Translocation is a Hallmark of Haematological malignancies

Lymphoma Concepts

- Neoplastic counterparts of normal B or T cells in various stages of activation
- Each specific type of lymphoma is "driven" by a distinct molecular abnormality
- The clinical illness which ensues may be predicted by the "Biology" and characteristics of the specific lymphoid cell which predominates

Burkitt' s Lymphoma

Over-expression of c-myc

Burkitt's Lymphoma: Starry Sky

SingHealth

Clinical Behavior: Aggressive

Follicular Lymphoma

↑ Bcl2 essentially block apoptosis

Small Lymphocytic Lymphoma

Morphology

Follicular Lymphoma: Immunostains

Follicular, grade 1 March, 1989

Follicular, grade 1 June, 1990

Morphology

Immunophenotyping

• **IMMUNOPHENOTYPING** refers to the technique of identifying molecules that are associated with lymphoma cells and that help to characterize them

Immunophenotypic Markers for Malignant Lymphocytes

Type of Lympocyte	Surface Immunoglobin	CD5	CD19	CD20	CD10	CD11c	CD22	CD23	CD43	CD103
CLL/SLL	+	+	+	+				+	+	
MCL	++	+	+	+	±		+		+	
HCL	++		+	+		+	+			+
LPL	++		+	+			+			
SML	++		+	+			+			
FCL	++		+	+	+		+			

Fluorescence In Situ Hybridisation (FISH)

WHO CLASSIFICATION

- Morphology
- Immunophenotype
- Genetic Aberration
- Clinical Behaviour

Lymphoma Classification (based on 2001 WHO)

• B-cell neoplasms

- <u>Precursor</u> B-cell neoplasms (2 types)
- Mature B-cell neoplasms (19)
- B-cell proliferations of uncertain malignant potential (2)
- T-cell & NK-cell neoplasms
 - Precursor T-cell neoplasms (3)
 - <u>Mature</u> T-cell and NK-cell neoplasms (14)
 - T-cell proliferation of uncertain malignant potential (1)
- Hodgkin lymphoma
 - Classical Hodgkin lymphomas (4)
 - Nodular lymphocyte predominant Hodgkin lymphoma

A Quick Working Classification of Lymphoma

Category		Survival of untreated patients	Curability	To treat or not to treat
Non- Hodgkin Iymphoma	Indolent	Years	Generally not curable	Generally defer Rx if asymptomatic
	Aggressive	Months	Curable in some	Treat
	Very aggressive	Weeks	Curable in some	Treat
Hodgkin Iymphoma	All types	Variable – months to years	Curable in most	Treat

Risk Factors

- Immunodeficiency
 - autoimmune disease
 - organ transplant
- Exposure to chemicals
 - pesticides, fertilizers, or solvents
- Infections
 - Epstein-Barr Virus
 - Human T-lymphotropic virus type 1
 - HIV
 - Hepatitis C
 - H-pylori

Risk of Non-Hodgkin's Lymphoma

Disorder Systemic lupus erythematosus Multiple sclerosis Sjögren syndrome Primary Secondary Scleroderma Immune thrombocytopenia Myasthenia gravis

Polymyositis/dermatomyositis

No. of Pooled relative studies risk

- 11 2.69 (1.68-4.30)
- 10 0.96 (0.48-1.92)
 - 6.56 (3.10-13.9)
 - 4.75 (1.79-12.6)
 - 9.57 (2.90-31.6)
 - 0.69 (0.20-2.40)
 - 2.13 (0.47-9.73)
 - 1.45 (0.31-6.82)

5 ND

8

8

8

7

5

6

Blood 2008

HBV Prevalence by Sex and Age: Lymphoma patients vs. General Population

	Lymphoma		Cor		
	n	% HBV +	n	% HBV +	р
Sex Male Female	332 224	8.1 13.4	2356 2342	4.9 3.6	≤0.025 ≤ 0.001
Age, yr 14-39 40-49 50-59 60-69	104 95 123 122	7.7 11.6 13 11.5	2544 1140 629 385	3.3 5.5 4.9 4.1	≤0.025 ≤ 0.025 ≤ 0.001 ≤ 0.01
Total	556	10.3	4698	4.1	≤ 0.001

Lim ST et al. Eur J Haematol 2008

Epidemiology: Genetic Risk factors

- GWAS of 253 Chinese cases with B-NHLs and 1500 healthy controls recruited in S' pore and further validation in 3 independent samples of Han Chinese
 - Currently working on a fine mapping study of the MHC region in NHL.
- Aim to work on genetic risk factors for T and NK/T cell lymphoma

Liu et al. Nature Genetics 2013

A National Concerted Effort Needed: Rising Incidence of NHL

5th most common in Singaporean Males

Reasons for the Increase in Incidence of NHL?

- The increasing incidence of NHL is poorly understood.
- Improved diagnostic techniques?
- Effects of the human immunodeficiency virus epidemic?
- Increase in immunosuppressive therapies?
- Environment: pesticides and solvents?
- Research to define reasons for this increase is extensive, but has not yet resolved them.

Marginal zone lymphoma: **Increasing Trend?**

Lymphoid tissue acquired

- · Hasimoto's thyroiditis
- H. pylori induced gastritis

Clinical Features

- Variable
 - severity: asymptomatic to extremely ill
 - time course: evolution over weeks, months, or years
- Generalized Symptoms
 - fever, night sweats, weight loss, anorexia, pruritis
 - B symptoms
- Local symptoms
 - Due to enlarged lymph node causing pain or obstruction

Other Complications of Lymphoma

CHOICE OF BIOSPY

- Fine needle aspiration biopsy
- Trucut Biopsy
- Excision Biopsy
- Incisional Biopsy

Excisional biopsy

- Most ideal in patients with accessible peripheral lymph nodes
- provides more tissue for evaluation
- permits the hematopathologist to evaluate the architecture of the lymph node.
- Note that it is wise to ask the surgeon to send the excised node to the lab in transport media (not fixative), as this will allow you to obtain a full range of diagnostic studies.

Staging of Lymphoma

A: absence of B symptoms B: fever, night sweats, weight loss

PET Scan in Staging Lymphoma

PET Scan for Lymphoma Staging

Histology		No of patients (%)	Median Age (yrs) (range)	No. of patients upstaged by PET/CT (%)
Aggressive B –NHL	DLBCL	55 (45%)	57 (21-80)	10 (18)
(n=63)	Mantle cell	3 (3)	59 (57-69)	0
	Burkitt's Lymphoma	5 (4)	52 (51-67)	2 (40)
Indolent B- NHL	CLL	2 (2)	51 (38-64)	0
(n= 21)	Follicular Iymphoma	11 (9)	59 (22-76)	0
	Marginal Zone/MALT	8 (7)	58 (25-75)	0
T-NHL		17 (14)	52 (24-79)	3 (43)
Hodgkin Lymphoma		21 (17)	28 (17-71)	6 (29)

Lim ST. Annals of Oncology 2009

Bone Marrow Examination

- Bone Marrow aspirate
- Bone Marrow Trephine Biospy
- Bone Marrow Flow Cytometry
- Bone Marrow Cytogenetics

What are my chances?

Prognostic Model: Aggressive Lymphoma

Age Adjusted International Index (pts < 60 years)

Stage LDH Performance Status

Ref: Shipp M, et al: NEJM 1993; 329:987

Significant Improvement in Survival over Time: Overall

• 5-yr OS: 72% vs 56% (p<0.001)

Improvement in Survival: DLBCL

Improvement in Survival: Marginal zone lymphoma

5-yr OS: 92% vs 79 %

Improvement in Survival: Follicular Lymphoma

5-yr OS: 90% vs 59% (p<0.01)

No improvement in survival of T-cell Lymphoma

5-yr OS: 32% vs 51% (p=0.103)

Treatment of Low Grade Lymphoma

Rituximab + Chemotherapy in First-Line Therapy of Advanced Stage FL Improves Clinical Outcomes

Author	Regimen		Р
Hiddemann et al	CHOP (n = 205)	R-CHOP (n = 223)	
Response rate	90%	96%	0.011
Median TTF	31 months	Not reached	< .0001
Marcus et al	CVP (n = 159)	R-CVP (n = 162)	
Response rate	57%	81%	< .0001
Median TTF	7 months	27 months	< .0001
Herold et al	MCP (n = 96)	R-MCP (n = 105)	
Response rate	75%	92%	< .001
Median EFS	19 months	Not reached	< .0001
Salles et al	CHVP/IFN- (n = 175)	R-CHVP/IFN- (n = 184)	
Response rate	85%	94%	< .0001

Zevalin[®] –

⁹⁰Yttrium-Labelled Ibritumomab Tiuxetan

Ibritumomab:

 Anti-CD20 murine MAb that targets malignant B-cells

• Tiuxetan:

 A high-affinity chelator that ensures a stable bond between MAb and ⁹⁰Yttrium

• ⁹⁰Yttrium (⁹⁰Y):

 Emits beta radiation that reaches malignant B-cells, 90% deposited within 5 mm (11 mm maximum path length)

Chinn et al. Int J Oncol 1999;15:1017-1025

Gene Expression Patterns: Molecular Subgroups of DLBCL

Ref: Rosenwald A, et al: NEJM 2002; 346:1937-47

Survival Based Upon Molecular Sub-Type of DLBCL

Ref: Rosenwald A, et al: NEJM 2002; 346:1937-47

Nature Reviews | Drug Discovery

Target	Inhibitor	Manufacturers	Clinical trials			
Chronic active BCR signalling						
ВТК	lbrutinib (PCI-32765)	Pharmacyclics/Janssen Research & Development	Phase III			
	Dasatinib	Bristol-Myers Squibb	Approved			
	AVL-292	Celgene	Phase I			
ΡΚϹβ	Sotrastaurin (AEB071)	Novartis	Phase I			
ΡΙ3Κδ	GS-1101 (CAL-101)	Calistoga Pharmaceuticals/Gilead Sciences	Phase II			
Chronic act	ive and tonic BCR signalli	ng				
SYK	Fostamatinib (R788)	Rigel Pharmaceuticals/ AstraZeneca	Phase II			
	PRT062607	Portola Pharmaceuticals/ Biogen Idec	Phase I			
Pan-PI3K	BKM120	Novartis	Phase I*			
	GDC-0941	Genentech	Phase lb*			
	XL147	Exelixis	Phase I*			
	ZSTK474	Zenyaku Kogyo Co.	Phase I*			
SRC family	Saracatinib	AstraZeneca	Phase II			
	KX01	Kinex Pharmaceuticals	Phase II			
	Dasatinib	Bristol-Myers Squibb	Approved			
TORC1	Rapamycin (sirolimus)	Wyeth/Pfizer	Approved			
	Everolimus	Novartis	Phase III			
	Temsirolimus	Wyeth/Pfizer	Approved			

BCR, B cell receptor; BTK, Bruton tyrosine kinase; PI3K, phosphoinositide 3-kinase; PKC β , protein kinase C β ; TORC1, target of rapamycin complex 1. *Clinical trials in solid tumours only.

Peripheral T Cell and NK/T cell Lymphoma (PTCL & NKTL): Geographical Distribution

PTCL and NKTL: An Unmet Need Globally and Asia in particular

Inferior survival of PTCL & NKTL compared to aggressive B cell NHL

Poor survival across major subtypes of PTCL and NKTL

Unraveling Mature T Cell Lymphoma:

Three-prong approach

Proposed Model of NKTL Pathogenesis and Strategies of Targeted Therapy

The Singapore Lymphoma Study Group

National Lymphoma Translational Research Program: From Genomics to Therapeutics

SingHealth

CREATING GROWTH. ENHANCING LIVES.